Hydrogène Orange: expériences et perspectives F. Osselin

Natural Hydrogen

- Abiotic oxidation of iron: $2FeO + H_2O = Fe_2O_3 + H_2$
- Radiolysis
- Magmatic degassing

PERIDOTITE

- 20Mt escaping every year from the subsurface to the atmosphere (Zgonnik 2020)
- 10²⁰ kg of peridotite on the first 7km of Earth (Kelemen 2008)
 - ✓ 1 kg_{H2}/m³, potential 10⁸Mt

Natural Carbonation

Peridotite

Listwanite: geological formation resulting from the extensive carbonation of peridotites

99,9% of total C stored as carbonates

 $(CAO, MGO)+CO_2 = (CA, MG)CO_3$

Orange Hydrogen: Stimulated Natural H₂

Stimulated production

 \checkmark 100 000 years of H₂

- Controlled production rate
- ✓ Simplified exploration
- ✓ No excavation/mining
- ✓ No stress on freshwater resources

• Combination of CO₂ and H₂

Economically more robust

- ★ More complicated process
- Requires injection & fracking
- ✗ Not « renewable »

Orange Hydrogen in the lab

Reactive percolation experiments

Cores 5.6mm dia. – few cm long P < 500 bar – < 400°C

Orange Hydrogen in the lab

Natural Serpentinite:

50% Serpentine 20% Opx 11% Cpx 13% Olivine 5% Aragonite 1% Spinel

Injection at 280°C

2 experiments with pure NaCl 1 experiment with NaCl+NaHCO₃

Results

General decrease of carbonates

General increase of carbonates

СЗ

1.3

Initially opened fractures get filled with calcite

BEFORE EXPERIMENT

AFTER EXPERIMENT

CO₂

Initially opened fractures get filled with calcite

Secondary percolation paths also appear clogged with calcite (SEM) **Multiscale precipitation**

CO₂

Initially opened fractures get filled with calcite

Secondary percolation paths also appear clogged with calcite (SEM) **Multiscale precipitation**

Aragonite veins get emptied on all scales

MUCH DENSER AND BRIGHTER NETWORK OF CARBONATES - MNO POLLUTION FROM INOX CORROSION

Results – Silicate alteration

Complete replacement of olivines by serpentine mesh in main and secondary percolations paths

Absence of olivine alteration in low flow zones

Results – Silicate alteration

Complete replacement of olivines by serpentine mesh in main and secondary percolations paths

Absence of olivine alteration in low flow zones

noCO₂

Similar replacement pattern but chrysotile instead of lizardite

Hydrogen production

CO_2/H_2 interaction

Carbonaceous matter likely generated by CO_2 reduction with H_2

 $nCO_2 + xH_2 \rightarrow C_nH_m + H_2O$

Permeability evolution

Hydrochemical Coupling - Permeability evolution

Hydrochemical Coupling - Permeability evolution

Hydrochemical Coupling

Hydrochemical Coupling

Hydrochemical Coupling - Permeability evolution

Hydrochemical Coupling - Permeability evolution

NO CLOGGING

NO MINERAL IS FAST ENOUGH TO PRECIPITATE IN THE MAIN PERCOLATION PATHS

CALCITE CLOGGING

CALCITE IS THE ONLY MINERAL PRECIPITATING FAST ENOUGH TO CLOG THE MAIN PERCOLATION PATHS

Scientific Conclusion

Importance of THMC coupling in Earth Science processes.

- ♦ Complicated chemistry
- ◆ Local equilibria
- ♦ Variable flow rates
- Importance of pressure and mechanics

Oespite a large molar volume variation, silicates are not responsible for permeability drop.

It's not the variation of molar volume, it's the location of the precipitation that matters.

 \diamond Despite clogging, reasonable carbonation of 5.6% of total injected CO₂ at 280° as well as a 3% to 8% H₂ yield in the CO₂-free case.

Perspectives

Potential to be a game-changer for the energy transition

♦ Market of \$1000B.

♦ The current state of research shows it is possible, but :

- What are the best P, T, Q, x conditions of injection?
- ♦ How does the permeability/porosity evolve during the process?
- ♦ How does the surface area evolve passivation?
- What is the influence of microbiology on the yield?

LOTS OF SCIENCE TO DO, COLLABORATIONS ARE VERY MUCH WELCOMED!