Hydrogen storage in salt caverns: evolution of salt permeability and hydromechanical modelling at the cavern scale under cycling conditions.

Dennys Coarita, Fabrice Golfier, Dragan Grgic, Farah Al Sahyouni, Mountaka Souley, Long Cheng

Université de Lorraine, CNRS, UMR 7359 GeoRessources, Nancy (France)
Institut National de l’Environnement Industriel et des Risques (Ineris), Nancy, France

Funding: ROSTOCK-H Geodénergies project, Grand Est Region Council, Carnot ICEEL
Hydrogen: versatile and promising carrier for energy transition

Currently produced from fossil fuels but from renewable energies in the future (green hydrogen)

Clean hydrogen (green and/or blue) should play a key role in the world transition to achieve carbon neutrality before 2050

- large-scale electricity storage
- decarbonize uses that are difficult to electrify
- use in industrial processes
GENERAL CONTEXT: massive H₂ storage

Storing hydrogen in large quantities is the best option

Massive Storage ➔ Underground storage

2 solutions

- Storage in deep aquifers
- Storage in salt caverns

Storage in salt cavern

Most secure and economical solution for large volumes of H₂

Only 4 salt caverns in operation worldwide (e.g., Spindletop USA, Teeside UK...)

but many industrial pilot sites in preparation worldwide (e.g., Etrez, France)
PROBLEM

Specific constraints compared to conventional gas storage

- High danger and mobility of H\textsubscript{2} (low density and viscosity, high diffusion)
- Need to accurately predict the extent of potential leaks of H\textsubscript{2} to ensure safe storage: sealing of salt?

Strong temperature (0-50 °C) and gas pressure (2-6 MPa for a 350 m deep cavern) variations in the salt cavern depending on the injection-production cycles (depends on usage)

→ Thermo-mechanical damage of rock salt in the near field (close to the wall) → permeability

FOCUS OF THE STUDY

Characterize the ThermoHydroMechanical behaviour of rock salt

- Mechanical properties of initial material
- Impact of damage processes on rock salt permeability
- Viscoplasticity effect (self-healing process)
- Impact of mechanical (static and dynamic) and thermal (dynamic) fatigue

MATERIALS AND METHODS

Rock salt samples

- Salt bed of the Alsace potash mines (530 m depth) in the East region of France (Stocamine site for ultimate waste storage)
- Sannoisian-Oligocene (Cenozoic) geological stage
- Considered as a natural analogue of salt caverns used for in-situ H₂ storage
- Very low initial porosity (~ 1%) composed mainly of infrapores (nanometric size) that connect dispersed cracks and macropores

Experimental device

- Large scale triaxial compression cell
- Continuous measurement of deformations (strain gages)
- Continuous measurement of gas (He) permeability with the steady-state method
- Pressures controlled with precision syringe pumps
Characterisation of the mechanical behaviour

- Hydrostatic compression tests
- Uniaxial and triaxial compression tests

→ Characterization of short-term deformation mechanisms (plasticity, micro-cracking damage)

Gas permeability measurements

- Under hydrostatic loading and triaxial loading with different confining pressures

→ Analyse the impact of the deformation mechanisms on permeability
 - At different gas pressures

→ Analyse the slippage (Klinkenberg) effect and obtain the intrinsic gas permeability
 - Under dynamic (cyclic) and static (creep test) triaxial loading, and under dynamic thermal loading

→ Analyse the impact of mechanical and thermal fatigue
MECHANICAL BEHAVIOUR OF ROCK SALT

Under hydrostatic loading

- **Isotropic** mechanical behaviour
- The behaviour is **elastic** (irreversible) and linear up to 30 MPa
 → No large initial cracks
- No poromechanical coupling (Biot’s coefficient ~ 0)

Stress-strain curves of an hydrostatic compression test

Under deviatoric loading

- **Very low elastic limit** (yield strength)
- Crack initiation and dilatancy thresholds increase with the confining pressure (Pc)
- Dilatant and irreversible microcracking damage develops at low Pc (0 and 1 MPa)
- Behaviour becomes **fully plastic** (ductile) at high Pc (5 MPa)
- Dilatancy threshold ↔ important increase of permeability due to cumulated microcracking damage

Stress-strain curves of of uniaxial (left) and triaxial (right) compression tests
Klinkenberg (slippage) effect

- **Klinkenberg effect** (i.e., decrease of permeability with the increase in gas pressure) only observed for the less permeable (and then less initially damaged) samples.
- When it appears, the gas flow falls in **transitional regime** in weakly damaged rock salt.

Evolution of apparent permeability k_a as a function of mean gas pressure at different deviatoric stress levels during triaxial compression tests.

Initial permeability

- The initial intrinsic permeability of the studied rock salt ranges over more than 4 orders of magnitude: 10^{-16} to 5×10^{-21} m2.
- Wide permeability range of the as-received samples due to the presence of cracks caused by the stress relaxation (induced by core drilling or cavity excavation) and sample preparation.

Voids (cracks) distribution in a rock salt sample from X-ray tomography.
Under deviatoric loading

- At low confining pressure (1 MPa): small increase in gas permeability from the dilatancy threshold due to microcracking damage.
- At high confining pressure (5 MPa): no increase in permeability because the material becomes fully plastic which practically eliminates microcracking and thus dilatancy.

Under hydrostatic loading

- Gas permeability decreases because of the closure of voids (cracks and pores).
- Decrease is irreversible if time of run is high enough.
- Due to the self-healing process (irreversible closure of cracks).
 → Restoration of the permeability of undisturbed natural rock salt.

Evolution of apparent permeability k_a as a function of deviatoric stress.

Evolution of apparent permeability k_a as a function of confining pressure P_c and time.
Static (creep test) and dynamic (cyclic) mechanical fatigue

- Volumetric dilatancy (microcracking damage) develops and increases slightly the permeability during dynamic fatigue
- Self-recovery reduces damage and decreases slightly the permeability during static fatigue (creep)

→ Different mechanisms involved in rock salt deformation during dynamic and static fatigue act in a competitive way to **annihilate any significant permeability evolution**
Cyclic thermal fatigue

- Small permeability increase due to the microcracking damage that develops at the microscopic scale
- Due to the anisotropy of the thermal deformation of rock forming minerals and to the polycrystalline nature of rock salt
 → Deformation heterogeneities and then differential thermal stresses and microcracking damage

Evolution of volumetric deformation ε_v as a function of time during the thermal cyclic fatigue test

Evolution of apparent permeability k_a as a function of mean gas pressure, before and after the thermal cyclic fatigue test

Intrinsic permeability
Before test: 2.7×10^{-20} m2
After test: 4.9×10^{-20} m2
The different mechanisms (viscoplasticity with strain hardening, microcracking and cracks healing) involved in rock salt deformation act in a competitive way to annihilate any significant permeability evolution.

→ Strong confidence in the H₂ storage in salt caverns which remains by far the SAFEST SOLUTION
Numerical modeling of hydrogen storage in salt cavern

• From available experimental results on salt rock, propose/develop a rheological model that reproduces the main features of short and long term behavior
• Validation based on experimental tests and application(s) to salt cavern
• Analysis of the impact of the operational phase:
 ✓ Mechanical behaviour of the salt cavern
 ✓ H_2 leakage through the cavern wall (extent of the dissolved H_2 plume)

• **HydroMechanical model**: viscoplastic and damage model

• **ThermoHydroMechanical model**: Previous model + fatigue + healing + thermal coupling
Elastoplastic and damage model

Elastic tensor

\[C_{ijkl} = (1 - d) C_{ijkl}^0 \]
\[d = d_i + d_f + d_t - h \]
\[d_i: \text{instantaneous damage} \]
\[d_f: \text{fatigue damage} \]
\[d_t: \text{tertiary damage} \]
\[h: \text{healing} \]

\[d: \text{total damage} \]

Mohr-Coulomb yield surface

\[f_p = q + p M_p - N_p \]
\[M_p = \eta_p(\gamma^p) \frac{\sin \phi}{(\frac{\cos \theta}{\sqrt{3}} - \frac{1}{3} \sin \theta \sin \phi)} \]
\[N_p = \eta_p(\gamma^p) \frac{(1 - d_i - d_f + h) c \cos \phi}{(\frac{\cos \theta}{\sqrt{3}} - \frac{1}{3} \sin \theta \sin \phi)} \]

Hardening rule

\[\eta_p(\gamma^p) = 1 - (1 - \eta_p^0) \exp \left\{ -\alpha_p \gamma^p \right\} \]
Elastoplastic and damage model

Plastic potential

\[g = q + \beta(\gamma^p) \rho \]

\[\beta(\gamma^p) = \begin{cases}
\beta_m - (\beta_m - \beta_0) \exp(-b_\beta \gamma^p) & ; \quad \gamma^p < \gamma^p_{ult} \\
\beta_{ult} \exp\left(1 - \frac{\gamma^p}{\gamma^p_{ult}}\right) & ; \quad \gamma^p \geq \gamma^p_{ult}
\end{cases} \]

\[\beta_m = \begin{cases}
\beta_m^0 \exp(a_p \sigma_1) & ; \quad \sigma_1 < 0 \\
\beta_m^0 & ; \quad \sigma_1 \geq 0
\end{cases} \]

\(\beta(\gamma^p) \) : dilatancy coefficient

\(\beta_0 (\beta_0 < 0) \) is the initial volumetric contraction, \(\beta_m (\beta_m > 0) \) is the volumetric dilatancy at large deformation.

We have volumetric contraction when \(\beta < 0 \), whereas the plastic strains evolve towards volumetric dilatancy if \(\beta > 0 \).
Elastoplastic and damage model

Instantaneous damage (d_i) (Mazars 1984)

\[f_d = d_i^{\text{max}} \{1 - \exp[-b_d (Y_d - Y_0)]\} - d_i \leq 0 \ ; \quad d_i \in [0; d_i^{\text{max}}] \]

\[d_i^{\text{max}} = \begin{cases}
 d_{i0}^{\text{max}} \exp(a_d \sigma_1) & ; \quad \sigma_1 < 0 \\
 d_{i0}^{\text{max}} & ; \quad \sigma_1 \geq 0
\end{cases} \]

\[Y_d = \sqrt{\langle \varepsilon \rangle : \langle \varepsilon \rangle} ; \quad \varepsilon \text{ is the principal strain value of the elastic and plastic strains} \]

\[a_d : \text{parameter describing the effect of confining stress} \]

Fatigue damage (d_f) (Zhang et al. 2023)

\[\dot{d}_f = \frac{b_f}{T_f} (d_f^{\text{max}} - d_f) \quad ; \quad d_f \in [0; d_f^{\text{max}}] \]

\[d_f^{\text{max}} = d_{f0}^{\text{max}} \eta_p \left(1 + b_{f2} \frac{Y_d - Y_d^c}{Y_d^c} \right) \]

Assumption: The value of instantaneous damage is constant during the fatigue test.
Elastoplastic and damage model

Creep strain rate

Transient creep
(Kelvin-Voigt model)

\[
\dot{\varepsilon}_{ij}^C = \frac{1}{\bar{\tau}_k^*} (q^* - \tilde{G}_k^* \varepsilon_{tr}) + A_N \exp \left(-\frac{B_N}{T} \right) \left(\frac{q^*}{\sigma_{ref}} \right)^{n_N} \frac{3}{2} \frac{s_{ij}}{q}
\]

\[\tilde{G}_k^* = G_k \exp (k_1 q^*) \quad \bar{\tau}_k^* = \tau_k \exp (k_2 q^*)\]

Steady-state creep
(Norton law)

\[q^*_{\text{Mises stress undamaged}} \quad q^*_{\text{Mises stress damaged}}\]

\[q^* = \frac{q}{1 - d}\]

\[q^*_{\text{Mises stress undamaged}} \quad q^*_{\text{Mises stress damaged}}\]

Damage is activated and increases if the damage limit (dilatance criterion) is exceeded.

Tertiary damage (d_t)

(Hou et al. 2003)

\[d_t = A_T \frac{A_T}{1 - d} n_T \left(\frac{f_{ds}}{\sigma_{ref}} \right)^n_T\]

Healing (h)

\[h = \frac{d}{h_1} \left(-\frac{f_{ds}}{\sigma_{ref}} \right)\]

Assumption: The healing boundary and the damage threshold are identical.

![Graph showing tertiary creep zone](image)
Mathematical formulation

Thermo-hydro-mechanical coupling

\[\nabla \left[C : \varepsilon^e - b (p - p_{ref}) I - \alpha C : (T - T_{ref}) I \right] + \rho_m \ddot{g} = 0 \]

\[\rho b \frac{\partial \varepsilon_v}{\partial t} + \frac{\rho_f \partial p}{M \partial t} + \nabla (\rho_f \ddot{q}) - 3 \rho_f \alpha_m \frac{\partial T}{\partial t} = 0 \]

\[\rho C_p \frac{\partial T}{\partial t} + \rho_f C_p \ddot{q} \cdot \nabla T - \nabla \cdot (\lambda \nabla T) = 0 \]

Where:

\[C = (1 - d) C^0 \]
\[\rho_m = (1 - n) \rho_s + n \rho_f \]
\[\ddot{q} = -\frac{k}{\mu_f(T)} (\nabla p + \rho_f \ddot{g}) \]

\[\frac{1}{M} = \frac{n}{K_f} + \frac{(1 - b)(b - n)}{K_d} \]

\[\alpha_m = (b - n) \alpha + n \alpha_f(T) \]

\[k = k_0 10^{4k \cdot d} \quad (Gawin et al. 2002) \]

- Fully water-saturated material
- Two-phase flow not considered
- Dissolved H\(_2\) transport by advection and diffusion
- The value of the Biot coefficient is 0.3 if material is damaged
Storage in salt cavern: case study
boundary and initial conditions

Model geometry

<table>
<thead>
<tr>
<th>Depth</th>
<th>Cavern A</th>
<th>Cavern B</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>-350</td>
<td>-1350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70 686</td>
</tr>
<tr>
<td></td>
<td>910 800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pmax - H₂</th>
<th>MPa</th>
<th>Pmin - H₂</th>
<th>MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavern A</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cavern B</td>
<td>20</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

H₂ Conditions

Cycling scenarios:
- **Seasonal**
 - For 50 years
- **Daily**
 - For 100 days

Analysis cases

- **Elastic** (To verify the HM model: realised)
- Cavern A (seasonal & daily)
- Cavern B (seasonal & daily)
Storage in salt cavern: case study

Cavern geometry, boundary and initial conditions and properties
\begin{align*}
\sigma \cdot \mathbf{n} &= p_{\text{atm}} z \\
p_f &= p_{\text{atm}} \\
T &= 25^\circ \\
\vec{n} \cdot (\nabla c_{\text{H}_2}) &= 0
\end{align*}

Initial stresses and pore pressure (MPa):

- \(\sigma_\nu \)
- \(\sigma_r \)
- \(p \)
- \(T \)

Temperature (°C):

- Temperature profile over depth.

Graphs showing:
- Depth vs. Radial Distance
- Depth vs. Temperature
- Depth vs. Pore Pressure
Storage in salt cavern: case study
Cavern geometry, boundary and initial conditions and properties

Short-term numerical values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35.0</td>
<td>GPa</td>
<td>a_p^0</td>
<td>70</td>
<td></td>
<td>a_p</td>
<td>0.5</td>
<td>/MPa</td>
<td>d_f^0</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>0.3</td>
<td></td>
<td>β_0</td>
<td>-0.02</td>
<td></td>
<td>b_d</td>
<td>70</td>
<td></td>
<td>b_{f_1}</td>
<td>0.036</td>
<td>s</td>
</tr>
<tr>
<td>c</td>
<td>12.5</td>
<td>MPa</td>
<td>β_m</td>
<td>1.5</td>
<td></td>
<td>$d_{f_1}^{\text{max}}$</td>
<td>0.3</td>
<td></td>
<td>b_{f_2}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>28.3</td>
<td>$^\circ$</td>
<td>b_β</td>
<td>80</td>
<td></td>
<td>a_d</td>
<td>0.5</td>
<td>/MPa</td>
<td>$Y_{f_0}^0$</td>
<td>0.0278</td>
<td></td>
</tr>
<tr>
<td>η_p</td>
<td>0.05</td>
<td></td>
<td>γ_{ult}</td>
<td>0.09</td>
<td></td>
<td>R_f</td>
<td>3</td>
<td>MPa</td>
<td>T_f</td>
<td>1</td>
<td>y</td>
</tr>
</tbody>
</table>

Long-term numerical values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_k</td>
<td>12600</td>
<td>MPa</td>
<td>η_l</td>
<td>60000</td>
<td>MPa.d</td>
<td>n_T</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>k_1</td>
<td>-0.18</td>
<td>1/MPa</td>
<td>k_2</td>
<td>-0.15</td>
<td>1/MPa</td>
<td>A_d</td>
<td>4.0E-10</td>
<td>1/d</td>
</tr>
<tr>
<td>l_1</td>
<td>0</td>
<td>1/K</td>
<td>A_N</td>
<td>0.005</td>
<td>1/d</td>
<td>$\beta_{\text{e_0}}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G_{ke}</td>
<td>7560</td>
<td>MPa</td>
<td>B_N</td>
<td>4700</td>
<td>K</td>
<td>a_r</td>
<td>0.5</td>
<td>1/MPa</td>
</tr>
<tr>
<td>k_{1e}</td>
<td>-0.18</td>
<td>1/MPa</td>
<td>n_{N_T}</td>
<td>4</td>
<td></td>
<td>h_1</td>
<td>6000</td>
<td>d</td>
</tr>
<tr>
<td>l_{1e}</td>
<td>0</td>
<td>1/K</td>
<td>A_T</td>
<td>4.0E-8</td>
<td>1/d</td>
<td>β_{n}</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Storage in salt cavern: case study

Cavern geometry, boundary and initial conditions and properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_0</td>
<td>1.0E-20</td>
<td>m²/s</td>
</tr>
<tr>
<td>A_k</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>μ_t</td>
<td>0.001</td>
<td>Pa.s</td>
</tr>
<tr>
<td>η</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>K_t</td>
<td>2.2E+9</td>
<td>Pa</td>
</tr>
<tr>
<td>ρ_t</td>
<td>1000</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>6.8</td>
<td>W/(m.K)</td>
</tr>
<tr>
<td>α</td>
<td>4.0E-5</td>
<td>1/K</td>
</tr>
<tr>
<td>C_p</td>
<td>850</td>
<td>J/(kg.K)</td>
</tr>
<tr>
<td>α_f</td>
<td>$f(T)$</td>
<td>1/K</td>
</tr>
<tr>
<td>D^*</td>
<td>6.0E-9</td>
<td>m²/s</td>
</tr>
</tbody>
</table>

Graph showing linear thermal expansion of water and dynamic viscosity of water as functions of temperature.
Hydro-mechanical results

Stress path at the bottom of the cavern (Deviatoric stress projected to the plane $\theta=\pi/6$)

- Relaxation of deviatoric stresses over time
- **Seasonal and cavern A:** in the first extraction it exceeds the elastic limit. For the following cycles this limit is not exceeded due to creep. In **cavern B** the dilatancy criterion is reached
Hydro-mechanical results

Plastic and damage zone

 Around **cavern A** there is a small extension of the plastic zone, in the lower and lateral part of the cavern.

 Around **cavern B**, the damage zone is initially located at the bottom. The plastic zone is all around the cavern and is more extensive for daily cycling.
Hydro-mechanical results

Cavern wall displacements

Around **cavern A**, the displacements are small and in the order of 26 mm.

Around **cavern B**, the displacements are important for seasonal cyclage. Maximum displacement of 3.6 m on the lateral side.
For both caverns, a similar hydrogen extension is estimated around the cavern. Almost 2.5 m for a daily cycling and almost 15 m for a seasonal cycling. **Gas transport mainly by diffusion.**
Thermo-hydro-mechanical results

Plastic and damage zones around cavern

Zones at 33 years for (a) Case 1: HM (b) Case 2: THM (c) Case 3: THM (without healing)

- Before the operation phase, only plastic zones are calculated in the analysis cases
- At 3.5 years (first minimum gas pressure), the damage zone appears, and the plastic zone increases.
- In the following years, damage zones increased slightly in extension, while the plastic zone increased more.
Thermo-hydro-mechanical results

Net damage at the bottom of the cavern

Note: Net damage is defined as $d = d_i + d_f + d_t - h$
Thermo-hydro-mechanical results
Cavern wall displacements

(a) Cavern wall displacements (scaled by a factor of 2.5), (b) horizontal and (c) vertical displacements for Case 1: HM

- Case 1 has more displacements than Cases 2 and 3 because it has a larger extent of the plastic zone around the cavern.
- Cases 2 (THM) and 3 (THM without healing) exhibit similar displacements.
- Important horizontal displacements are calculated on the bottom wall of the cavern, while significant vertical displacements are calculated on the floor of the cavern.
Thermo-hydro-mechanical results

Pore pressure distribution

Pore pressure distribution around salt cavern at 32.5 years for:
(a) Case 1: HM (b) Case 2: THM (c) Case 3: THM (without healing)

- Pore pressure distributions for Cases 2 and 3 show more modification around the cavern compared to Case 1, due to the temperature effect.
Thermo-hydro-mechanical results

Hydrogen leakage

Hydrogen extension around salt cavern at 33 years for:
- (a) Case 1: HM
- (b) Case 2: THM
- (c) Case 3: THM (without healing)

Hydrogen extensions are similar for the three cases due to transport properties, modified only near the cavern wall.
Conclusions

• A THM model describing the main key features of the rock salt behavior has been developed
 ✓ Short term model takes into account elastoplastic and instantaneous damage behaviors
 ✓ For the long-term behavior, the three creep phases generally observed on creep tests are considered
 ✓ Fatigue damage and healing have been also implemented
 ✓ Thermal coupling and hydrogen transport are considered

• Numerical simulation results
 • The deep cavern is more susceptible to mechanical stability problems.
 • The daily scenario is also more detrimental to the stability.
 • Even if damage occurs, the extent of damage zone is limited
 • the amount of gas leakage is also limited and both caverns lead to almost the same plume size because of diffusion which is preponderant.
 • Healing contributes to annihilate any significant damage evolution
Thank you for your attention!
Main assumptions of the model

- Rock salt is considered as an isotropic material
- Its elastic limit is very low - The initial yield strength is assumed to be a fraction of the peak strength criterion
- It has a **hardening deformation mechanism** and shows a more **ductile response** than most other rocks
- **Ductile behaviour**: increasing confining stress
- Significant dilatancy at low confining stresses - To define the dilatancy criterion
- we use the plastic potential: volumetric plastic strain \(\varepsilon^p_v\)
- if \(\varepsilon^p_v > 0\): we suppose that the material is in volumetric dilatancy

Damage initialisation: volumetric dilatation, due to microcracking, lead to a significant increase in the permeability of rock salt

- Damage initiation is characterised macroscopically by dilatancy
- The maximum achievable damage is reduced with increasing confining stress, because there is no volumetric dilatancy → ductile behaviour
- Based on continuum of damage mechanics - CDM, an **isotropic damage** variable is considered, in first approximation, which modifies the elasticity and strength parameters
Proposed elastoplastic damage model

Full model equations (compressive stresses are negative and $\sigma_1 \leq \sigma_2 \leq \sigma_3$)

M-C yield surface:

$$f_p = q + p M_p - N_p$$

$$M_p = \eta^p (\gamma_p) \left(\frac{\sin \phi}{\left(\frac{\cos \theta}{\sqrt{3}} - \frac{1}{3} \sin \theta \sin \phi \right)} \right) ; \quad N_p = \eta^p (\gamma_p) \left(\frac{(1 - d) c_i \cos \phi}{\left(\frac{\cos \theta}{\sqrt{3}} - \frac{1}{3} \sin \theta \sin \phi \right)} \right)$$

Hardening variable:

$$\eta^p (\gamma_p) = \left\{ \eta_o^p + \left(1 - \eta_o^p \right) \frac{\gamma_p}{\alpha^p + \gamma_p} \right\}$$

(Chiarelli et al. 2003, Zhou et al. 2011)

Plastic potential:

$$g = q + \beta (\gamma_p) p$$

(Chiarelli et al. 2003, Souley et al. 2017)

$$\beta (\gamma_p) = \begin{cases} \beta_m - (\beta_m - \beta_0) \exp (-b_\beta \gamma_p) & ; \quad \gamma_p < \gamma_{ult} \\ \beta_{ult} \exp \left(1 - \frac{\gamma_p}{\gamma_{ult}} \right) & ; \quad \gamma_p \geq \gamma_{ult} \end{cases}$$

$$\beta_m = \beta_{m0} \exp (a_d \sigma_3)$$
Rock salt behaviour in long-term

\[\varepsilon_{ij}^c = \left(\frac{1}{\bar{\eta}_k^*} (q^* - \bar{G}_k^* \varepsilon_{tr}) + A_N \left(\frac{q^*}{\sigma_{ref}} \right)^{n_N} \right) \frac{3}{2} s_{ij} \]

\[\bar{G}_k^* = G_k \exp(k_1 q^*) \]

\[\bar{\eta}_k^* = \eta_k \exp(k_2 q^*) \]

Transient creep
(Kelvin-Voigt model)

Steady-state creep
(Norton law)

Tertiary creep
(Hou et al. 2003)

\[\dot{d}_t = A_T \left(\frac{f_{ds}}{\sigma_{ref}} \right)^{n_T} \]

Parameters: \(G_k, k_1, \eta_k \) and \(k_2 \)
(Heussermann et al. 2003)

Parameters: \(A_N \) and \(n_N \)

\[q^* = \frac{q}{1 - d_t} \]

\(q^* \): Mises stress undamaged
\(q \): Mises stress damaged

Damage is activated and increases if the damage limit (dilatance criterion) is exceeded

Numerical uniaxial creep test

![Numerical uniaxial creep test diagram](image)
Full model equations

(compressive stresses are negative and $\sigma_1 \leq \sigma_2 \leq \sigma_3$)

Damage:

$$f_d = d_{\text{max}} \{1 - \exp(-b_d (Y_d - Y_0))\} - d \leq 0$$

$$Y_d = \sqrt{\langle\epsilon\rangle: \langle\epsilon\rangle}$$

(Mazars 1984)

Y_0 = value of Y_d at $\beta (\gamma_p^*) = 0 \Rightarrow f_{ds}$

$$d_{\text{max}} = d_{\text{max}}^0 \exp(a_d \sigma_3)$$

a_d: parameter describing the effect of confining stress

d_{max} decreases from its maximum value due to confinement effect

Dilatance criterion

$$\beta (\gamma_p^*) = 0; \quad \gamma_p^* = -\frac{1}{b_\beta} \ln \left(\frac{\beta_m}{\beta_m - \beta_0} \right) \quad \Rightarrow \eta^p (\gamma_p^*)$$

$$f_{ds} = q + p M_{ds} - N_{ds}$$

$$M_{ds} = \eta^p (\gamma_p^*) \frac{\sin \phi}{\cos \theta - \frac{1}{3} \sin \theta \sin \phi}$$

$$N_{ds} = \eta^p (\gamma_p^*) \frac{c_i \cos \phi}{\cos \theta - \frac{1}{3} \sin \theta \sin \phi}$$

Parameters:

E, ν
$c_i, \phi, \eta_0^p, \alpha^p, \beta_0, \beta_m, b_\beta, d_{\text{max}}^0, b_d, a_d$

Thorel 1994: $c_i, \phi, d_{\text{max}}^0, b_d, a_d$
Dragan et al. 2021: $E, \nu, \beta_0, \beta_m, b_\beta$
Numerical verification of triaxial tests

Short-term parameters values used

![Graphs showing experimental and numerical deviatoric stress and volumetric strain curves compared to theoretical criteria.](image)