A P1-bubble Virtual Element Method for mixed dimensional models with frictional contact at matrix fracture interfaces

J. Droniou, G. Enchery, I. Faille, A. Haidar and R. Masson

Keywords: Poromechanics, Contact mechanics, Virtual Element Method, Finite Volume, Mixed formulations, Bubble stabilization.

This work deals with the discretization of processes coupling a Darcy flow in a fractured/faulted porous medium, the mechanical deformation of the matrix domain surrounding the fractures, and the mechanical behavior of the fractures. Such coupled models are of paramount importance in a broad range of subsurface processes like geothermal systems or geological storage. Fractures or faults will be represented as a network of planar surfaces leading to the so-called mixed-dimensional models. Small displacements and a linear elastic behavior are considered in the matrix domain. Our objective is to design a discretization adapted to polyhedral meshes in order to cope with the geometrical complexity of faulted geological systems, and preserving the energy estimates of the coupled system. It combines a Finite Volume discretization of the flow model with a mixed formulation for the contact mechanics based on a first order Virtual Element Method for the displacement field and a face-wise constant discretization of the surface tractions. Virtual bubbles are added to the displacement space at the fracture faces in order to guarantee the stability of the contact terms.

Références

 Coulet J., Faille I., Girault V., Nicolas G., Nataf F.A fully coupled scheme using virtual element method and finite volume for poroelasticity, Computational Geosciences, 24, p. 381-403, 2020.
Bonaldi F., Droniou J., Masson R., Pasteau A. Energy-stable discretization of two-phase flows in deformable porous media with frictional contact at matrix-fracture interfaces, Journal of Computational Physics, 455, 2022.

J. Droniou Monash University jerome.droniou@monash.edu

I. Faille IFPEN *isabelle.faille@ifpen.fr*

A. Haidar University Côte d'Azur ali.haidar@univ-cotedazur.fr E. Guillaume IFPEN guillaume.enchery@ifpen.fr

R. Masson University Côte d'Azur roland.masson@univ-cotedazur.fr