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Context and goals
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Need for MASSIVE storage capacity!

Strategic reserve

Offer/Demand

Renewable energy intermittence
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H2 STORAGE FACILITIES

(FOR ENERGY PURPOSES)

2050

Large storage capacity
Geographical availability

20302020

TWh

TRL 9

TRL 9

Low TRL



5UNDERGROUND HYDROGEN STORAGE : INFLUENCING FACTORS

 Loss through H2 dissolution and reactivity

 Sealing capacity of caprock

 Potential mixing between H2 and cushion gas (if other than H2)

 Gas humidification 



6THESIS PURPOSES

Field of study: Material exchange in “gas/brine” 
and “gas/brine/rock media”

 Molecular Simulations (MS) of Equilib. Prop.

 Development of thermodynamic models

• Estimation of the diffusion coefficient 

Considered gases:H2, CH4, CO2
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Ref: Lachet, Véronique. "La simulation moléculaire: un outil au service de l’industrie." l’actualité chimique 340 (2010): 22.

WHAT IS AND WHY MOLECULAR SIMULATION?

• High-performance computing (HPC)

• Force field

• Statistical method (Monte Carlo)

• Newton’s law of motion (Molecular Dynamics)
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Some results: H2 solubility in NaCl brine 



9THE DIFFERENT METHODS FOR THE CALCULATION OF SOLUBILITY

 Method 1: Henry constant (Hi):  The solubility of hydrogen in water/brine can be calculated 

using the Henry constant, which is related to the residual chemical potential of the solute i at 

infinite dilution µi∞ : 

Hi = ρkBT exp(µi
∞ /kBT ) 

kB : Boltzmann constant, T: temperature, ρ: solvent density.

µi
∞ : from molecular simulation 

 Method 2: Using Gibbs ensemble (2boxes -NPT ensemble) => xi and yi (molar composition)



10THE DIFFERENT METHODS FOR THE CALCULATION OF SOLUBILITY

• Method 3: Equality of chemical potentials: Independent NPT simulations => xi and yi

Vapor phase
(H2+H2O)

NPT ensemble

N simulations H2 H2O

1 600 1

2 600 2

3 600 …

4 600 ...

… … …

Liquid phase
(H2+H2O)

NPT ensemble

H2O H2

730 1

730 2

730 …

730 ...

… …
xi xi or yi

𝜇T, i

Internship from 02 May to 29 sept 2023: Molecular simulation of the thermodynamic
properties of H2 in NaCl brine at high pressure and temperature for a native hydrogen
production application



11MOLECULAR SIMULATIONS: TOOLS

 2 tools were used for the calculation of H2 solubility by performing Monte Carlo

simulations : Towhee-CBMC and Brick-CFCMC

CPU time:
Brick-CFCMC= 3-6days vs 
Towhee=23 days-1 month!

Ref :Hens, R., Rahbari, A., Caro-Ortiz, S., Dawass, N., Erdős, M., Poursaeidesfahani, A., ... & Vlugt, T. J. (2020). Brick-CFCMC: Open source software for Monte Carlo simulations of 
phase and reaction equilibria using the Continuous Fractional Component Method. Journal of chemical information and modeling, 60(6), 2678-2682.



12MOLECULAR SIMULATIONS: MODELS

 Pure H2 model: Alavi, Marx

 Pure H2O model: SPC/E, TIP4P/2005, TIP4P/EP

 Na+, Cl- model: KBF, Madrid2017, OPLS

 Cross-interaction: Lorentez-Berthelot (LB)

Cross energy: cross diameter:
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Solubility of H2 in water 
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By fixing the density (exp) or by using a suitable
model for water density (TIP4P/2005), the
results are qualitatively much improved (H vs. T)

What can be done to quantitatively 
improve predictions?

Effect of density on the qualitative representation of H vs. T

Solvent (H2O) density 

Henry’s constant: H2+H2O

HENRY COEFFICIENT FOR H2-H2O SYSTEM
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HENRY COEFFICIENT- H=F(T)

 Using the Marx model for H2 significantly improves the predictions.

Effect of the excess chemical potential  on the quantitative representation of H vs. T
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HENRY COEFFICIENT FOR H2-H2O SYSTEM
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 A constant BIP on energy
for H2-H2O are used to
improve the quantification
of the H2 solubility in pure
water.

BIP: Binary interaction parameters

Models used:
• Marx_TIP4P/2005
• Marx_TIP4P/EP
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Solubility of H2 in NaCl brine



Brine (H2O+NaCl) density
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T=298,15 - P=0,1MPa

 The TIP4P/2005-OPLS, TIP4P/2005-Madrid 2017 and TIP4P/EP-KBF models  were 
selected for the calculation of H2 solubilities in brine.
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HENRY COEFFICIENT FOR H2-H2O-NACL SYSTEM
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Radial distribution function (RDF) of H2+H2O+NaCl system

Solvation structure of H2/NaCl brine mixtures

 According to the RDF results, H2-H2O  and H2-Cl- interactions are dominant!

 The radial distribution function (RDF) is used to evaluate the solvation structure of the 
H2/brine mixtures which is shown to be dominated by the H2-H2O and H2-Cl- interactions
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HENRY COEFFICIENT FOR H2-H2O-NACL SYSTEM

Excellent representation of H2 solubility in NaCl brine using three different models
(Marx_TIP4P/2005_OPLS – Marx_TIP4P/EP_KBF-Marx_TIP4P/2005_Madrid).
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Thermodynamic modeling



23THERMODYNAMIC MODELING : GAMMA/PHI APPROACH

𝑥𝐻2 T, P, 𝑚𝑠 =
𝑦𝐻2 ∙  𝑃 ∙  𝜑𝐻2

𝐻𝐻2 𝑇, 𝑃𝑤
𝑠𝑎𝑡 ∙  𝛾𝐻2 ∙ exp  

𝜗𝐻2,𝑤
∞  
𝑅𝑇 (𝑃 − 𝑃𝑤

𝑠𝑎𝑡 ) 
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25AN EXAMPLE OF APPLICATION : UNDERGROUND BIO-METHANATION

 The ternary H2-CO2-H2O
system was also modeled to
estimate the optimal H2/CO2

ratio for underground bio-
methanation application.

 The models predict the ternary CO2-
CH4-H2O system very well when
compared with literature
experimental data.
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Transport properties

Self-diffusion coefficient (SDC) of 
H2 in Water and Brine



27EMD VS NEMD

There exist two main techniques used in the MD simulations to estimate the SDC

 Equilibrium molecular dynamics (EMD):

The Kubo-Green formula 

Einstein’s relation  

Slow convergence and a low signal-noise ratio => Large statistical uncertainties 
especially for highly diluted gases

 Non-Equilibrium molecular dynamics (NEMD)

High-noise ratio => good statistical uncertainties

External field non-equilibrium molecular dynamics (EF-NEMD) is used in this work

𝒗i (𝑡) is the velocity of gas molecule i th at the time t, and 〈… 〉 is the 
average over molecules

𝐫𝑖 (𝑡) is the position of gas molecule i th at the time t.

SDC : Self-diffusion coefficient
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H2-H2O Approaches T [K] P [bar] D x 109 [m2/s] σ

Marx + TIP4P/2005 [1] EMD 298.15 1 5.90 1.8

EMD

Vrabec + TIP4P/2005 [1] EMD 298.15 1 4.90 0.3

Vrabec + TIP4P/2005 [2] EMD 298.15 1 4.40 0.6

Marx + TIP4P/2005 –This work NEMD 298.15 1 5.20 0.28

H2-H2O-NaCl (mNaCl=1 molNaCl/kgw) Approaches T [K] P [bar] D x 109 [m2/s] σ

Vrabec + TIP4P/2005+Madrid Transport [2] EMD 298.15 1 3.70 0.6

Marx + TIP4P/2005 +Madrid –This work NEMD 298.15 1 4.14 0.13

Marx + TIP4P/2005 +Madrid Transport –
This work

NEMD 298.15 1 4.45 0.22

[1]:  Tsimpanogiannis et al. 2021
[2]: Van Rooijen et al. 2023

 The predicted self-diffusion coefficients for H2 in pure water and NaCl brine are within the order of 
magnitude and very similar to literature results, with a better (lower) uncertainty.

 H2 Diffusion tends to decrease in brine relatively to pure water



29CONCLUSION

 New equilibrium data of H2/brine system are predicted using Monte Carlo simulation
while studying the effect of bulk and excess properties representation on solubility

 MS data for H2/brine in addition to those from the literature for other gases (CH4 and
CO2) were used to optimize the parameters of the thermodynamic models.

 First coherent diffusivity results with better uncertainties

 The results obtained can be used to assess dissolution losses and caprock integrity, in
addition to the other properties (diffusivity, clay effect) currently being studied.

 Finally, for underground bio-methanation application, the thermodynamic modeling
showed that the optimal H2/CO2 ratio is around 3% CO2 (97% H2) to be injected (to
have a stochiometric ratio of 1:4).

Molecular simulation is a practical tool to:

 Predict pseudo-experimental data and reduce the number of experimental 
measurements

 Explore extreme T and P conditions that are difficult to measure. 
 Investigate physical phenomena at the molecular scale.
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